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ensemble

C Blecken and K A Muttalib
Department of Physics, University of Florida, Gainesville, FL 32611, USA
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Abstract. The effect of an external perturbation on the energy spectrum of a mesoscopic
quantum conductor can be described by a Brownian motion model developed by Dyson who
wrote a Fokker–Planck equation for the evolution of the joint probability distribution of the
energy levels. For weakly disordered conductors, which can be described by a Gaussian random
matrix ensemble, the solution of the Fokker–Planck equation has recently been obtained to give
the correlation of level densities at different energies and different parameter values. In this
paper we generalize this calculation to the case of aq-random matrix ensemble which should
be relevant for conductors at stronger disorder.

1. Introduction

Weakly disordered mesoscopic quantum conductors are well described by Gaussian random
matrix ensembles [1]. The joint probability distribution of the eigenvalues of such an
ensemble ofN ×N Hermitian matrices is given by [2]

P(Ei) =
N∏
i

|Ei − Ej |β exp[−V (Ei)]. (1)

Here the factor
∏N
i |Ei − Ej |β comes from the Jacobian associated with the transformation

from the space of Hermitian matrices to the space of eigenvaluesEi , andV (E) = cE2/2
for Gaussian ensembles wherec is an arbitrary positive constant which determines the mean
level spacing. The parameterβ depends on the symmetry of the ensemble; it is 1, 2 or 4
if the ensemble is orthogonal, unitary or symplectic respectively. Dyson [3] showed that
the above joint probability distribution can be obtained within a one-dimensional Brownian
motion model with some fictitious ‘time’τ . In this modelN classical particles at positions
Ei(τ ) evolve in a fictitious viscous fluid with friction coefficientµ and temperature 1/β
according to the Fokker–Planck equation

µ
∂

∂τ
P (Ei, τ ) =

N∑
i=1

∂

∂Ei

(
P
∂W

∂Ei
+ 1

β

∂P

∂Ei

)
. (2)

Here

W(Ei) = −
∑
i<j

ln |Ei − Ej | +
∑
i

V (Ei). (3)

Distribution (1) is then obtained as a (τ →∞) limiting equilibrium distribution ofP(Ei, τ ).
Beenakker and Rejaei [4] have recently shown that one can actually identify the fictitious
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time τ with an external perturbation parameterX (which can be, for example, an electric
or magnetic field acting on the system) if one definesτ = X2. The eigenvaluesEi(X)
will now depend parametrically onX. This then allows one to obtain various energy level
correlation functions at different values of the external perturbation parameter, usually called
parametric correlations.

The Brownian motion model of Gaussian random matrix ensembles have been used [4]
to obtain the parametric density correlation function defined as

S(E,X,E′, X′) =
∑
i,j

〈δ(E − Ei(X))δ(E′ − Ej(X′))〉

−
(∑

i

〈δ(E − Ei(X))〉
)(∑

j

〈δ(E − Ej(X′))〉
)

(4)

where 〈 〉 denotes an average over an ensemble of particles with different impurity
configurations. Their calculation reproduces the earlier results of Szafer and Altshuler [5]
obtained from microscopic theory for disordered conductors and valid for weak disorder. In
particular, the Brownian motion model reproduces a remarkable universality first obtained
in [5] in the level ‘velocity autocorrelation function’ defined as

C(X) = 1

12
〈∂X′Ei(X′)∂X′Ei(X′ +X)〉 (5)

where1 is the mean level spacing.
In this paper we will argue that a generalization of the Fokker–Planck equation (2)

to include the strong disorder regime naturally leads to the Brownian motion model of a
q-ensemble [6]. We will first motivate the generalization and define the model, and then
solve it exactly to obtain the correlation functions defined in (4) and (5) as functions of the
deformation parameterq which plays the role of disorder.

2. The q-Hermite ensemble

Although the Gaussian ensemble has been defined by choosingV (E) = cE2/2 in (1), in
general one can think ofV (E) as a Lagrange multiplier function which can be chosen to
yield, for example, a particular density of levels appropriate for the system being described.
It is known that the correlation functions obtained from the probability distribution (1)
become independent ofV (E) for a wide variety of choices once they are expressed in terms
of a variable in which the mean level spacing is unity. This is the source of universality
in the random matrix ensembles. However, as pointed out in [6], this universality breaks
down for sufficiently ‘weak’V (E) such thatV (E) behaves as ln2E for largeE instead of
any power ofE. In particular ifV is qualitatively of the formV (E) = b ln2[1+E] (where
b is a constant) such that it crosses over from a power law behaviour at smallE to a ln2E

behaviour for largeE, then this behaviour can be well represented by the weight function
of a q-Hermite polynomial, given by [7]

V (E; q) = ln θ2(i sinh−1E;√q)+ constant (6)

where θ2 is the second Jacobi theta function. The resulting random matrix ensemble is
a q-Hermite ensemble with properties that show a crossover from the Gaussian ensemble
(for q = 1) towards an uncorrelated Poisson ensemble, as a function of the deformation
parameterq. At a phenomenological level, theq-ensembles could be thought of as the
strong disorder generalization of the Gaussian random matrix ensemble. The nearest-
neighbour spacing distribution and the number variance as a function of disorder obtained
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numerically from the microscopic tight-binding Anderson model for a strongly disordered
three-dimensional conductor agrees very well [8] with those calculated for theq-ensembles.
Moreover, the numerically obtained shape of the spacing distribution at the critical regime
agrees quantitatively well with the predictions of theq-model for a particular value of the
deformation parameter, and the numerically obtained number variance agrees quantitatively
well with the prediction of theq-model for thatsame valueof the parameter†. It has
also been shown [10] that the two-level correlation function obtained for theq-ensemble
is identical to that obtained for a matrix model at the critical regime where the effect of
strong disorder is incorporated by including a preferential basis [11]‡. These agreements
indicate that theq-ensemble captures the essentials of the statistical properties of the system
at stronger disorder near the critical regime. It is therefore natural to try to generalize the
Brownian motion model along the same lines and consider a ‘q-deformed’ Fokker–Planck
equation as a phenomenological model that includes stronger disorder. For simplicity, we
will consider only the unitary ensemble. From the mathematical point of view, properties
of such q-deformed Brownian motion have not been obtained before and should be of
intrinsic interest. Our calculations will generalize the method of [4] for the parametric
density correlation functionS(X). In particular we will use the density correlation function
to explicitly calculate the level velocity autocorrelation functionC(X) and predict how the
universality at weak disorder breaks down with increasing disorder.

The above discussion suggests that the natural choice for the generalization of the
Fokker–Planck equation (2) to include strong disorder is to replaceV (E) in (3) withV (E; q)
given in (6). We will call this the Brownian motion model of theq-Hermite ensemble,
because the limiting distributionP(Ei; q, τ → ∞) will correspond to the equilibrium
distribution for theq-Hermite ensemble. This generalization is clearly not unique. For
example, one other possible route is to replace the derivatives in (2) withq-difference
operators. Our generalization is motivated by the role ofV (E) in the corresponding
phenomenological equilibrium model which seems to be relevant for strongly disordered
conductors.

3. Brownian motion model of q-Hermite ensemble

In order to calculate the parametric density correlation function (4), we need to know the
eigenfunctions and eigenvalues of the Fokker–Planck equation (2). Sutherland [12] obtained
them for the particular case ofV (E) = cE2/2 by mapping (2) onto a Schrödinger equation.
In the special case ofβ = 2, the mapping yields a set of non-interacting fermions for which
the eigenfunctions and eigenvalues are known. We will follow his method and show that
although for theq-ensemble the mapping yields a very complicated interacting system even
at β = 2, it is still possible to identify the eigenfunctions and eigenvalues with known
functions and therefore obtainS(X) as well asC(X).

In order to map the Fokker–Planck equation (2) onto a Schrödinger equation, we
define [4]

P(Ei; τ) = 90(Ei)φ(Ei; τ) (7)

† The numerical work of [8] was done for a model with confining potentialV (E) = A ln2(|E|), |E| → ∞. As
emphasized in [6] and confirmed in [9], this is equivalent to theq-model.
‡ The two-level correlation function of [11] in thecritical regimecoincide with theN →∞ limit of the q-model
of [6]. The weak disorder regime in both models correspond to a scaling of the parameter such thatγN → 0 as
N →∞.
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where

90(Ei) = e−βW(Ei)/2 (8)

andW is given by (3). It is easy to check thatφ(Ei; τ) = e−βW(Ei)/2 is a solution of the
time-independent Fokker–Planck equation. Substituting (7) into (2) yields the following
equation forφ,

βµ
∂φ

∂τ
=
∑
j

[
∂2

∂Ej
2 −

1

90

∂29

∂Ej
2

]
φ. (9)

For any choice ofV , from the definition of90 we obtain

1

90

∑
k

∂29

∂Ek
2 =

∑
k<l

β(β − 2)

2(Ek − El)2 −
∑
k<l

β

(Ek − El)
[
∂V (Ek)

∂Ek
− ∂V (El)

∂El

]

−
∑
k

[
∂2V (Ek)

∂Ek
2 −

(
∂V (Ek)

∂Ek

)2
]
. (10)

We can identify the right-hand side of (10) with some(ε − U(E)), and write,

H90 = ε90 (11)

where

H =
∑
j

∂2

∂Ej
2 + U. (12)

Thus 90 satifies a time-independent Schrödinger equation with HamiltonianH , and
eigenvalueε. Substituting (10) into (9), we obtain

−∂φ
∂τ
= 1

βµ

[
−
∑
j

∂2

∂Ej
2 − U + ε

]
φ = −(H − ε)φ. (13)

Thus for τ = it , φ satisfies a time-dependent Schrödinger equation, whose time evolution
is determined by the HamiltonianH , which in turn satisfies the time-independent equation
(11).

For V (E) = cE2/2,

U =
∑
k<l

β(β − 2)

2(Ek − El)2 + c
2
∑
k

Ek
2. (14)

In this case (12) becomes the well known Sutherland Hamiltonian with inverse square
interaction and a harmonic oscillator potential, and eigenvalueε = Nc + βN(N − 1)/2.
For the special case ofβ = 2, the interaction term inU becomes zero and the Hamiltonian
is simply that of a set of non-interacting particles in a harmonic oscillator potential. The
time evolution of the single particle wavefunctions are then given by the eigenvalues and
eigenfunctions of a harmonic oscillator and can be used to write the parametric density
correlation function [4]:

S(E,E′;X) = c
∞∑
n=N

N−1∑
m=0

φn(E
√
c)φn(E

′√c)φm(E
√
c)φm(E

′√c)e(εm−εn)X2
(15)

whereφn(E
√
c) and εn are the normalized eigenfunctions and energy eigenvalues of the

harmonic oscillator with frequencyω = 2c/µ, and we have usedτ = X2.
For ourq-ensemble,V is given by (6). Although the coefficient of the inverse square

term still vanishes forβ = 2, clearly the long-range(Ek−El)−1 term does not vanish in this
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case for anyβ, and the corresponding HamiltonianH remains that of a very complicated
interacting set of particles [13]. Nevertheless, the important point is that the many-body
wavefunction for this Hamiltonian is known from (11) to be90, which has the form of a
Vandermonde determinant as seen from (8) and (3). We know that such a determinant can
be written as an antisymmetrized product of orthogonal polynomials [2] withV (E; q) as
its weight function, so that the many-body wavefunction has the form of products of single-
particle wavefunctions given by the orthogonal polynomials. The time evolution ofφ is
then determined by the single-particle Hamiltonian that corresponds to these single-particle
wavefunctions. ForV = cE2/2 andβ = 2, these are the Hermite polynomials which are
wavefunctions of the harmonic oscillator and therefore we recover the results of [4]. ForV

given by (6) andβ = 2, these areq-Hermite polynomials which are the wavefunctions of
a q-Harmonic oscillator. In other words, the many-body Hamiltonian in this case actually
corresponds to a set of independentq-oscillators.

4. Parametric density correlation function

We can now write the parametric density correlation function for theq-ensemble. Since
the time evolution is determined by non-interactingq-oscillators, the density correlation
function has exactly the same form as (15), except that theφn(E) and εn are now the
normalized eigenfunctions and energy eigenvalues of theq-harmonic oscillator. These are
given in Ismail and Masson [14] and Ismail [15],

φn(E; q) = 1

kn
hn(E; q)e−V (E;q)/2 (16)

and

εn(q) =
(
nq + 1

2

)
ω nq = 1− qn

1− q ω = 2

µ ln 1
q

(17)

where

kn = qn(n+1)/4√
ln 1

q
(q; q)n(q; q)∞

(18)

are the normalization constants,

hn(E; q) =
n∑
k=0

(q)n

(q)n(q)n−k
(−1)kqk(k−n)

(
E +

√
E2+ 1

)n−2k
(19)

are theq-Hermite polynomials and we have used the notation(q)k =
∏k
j=1(1− qj ).

Note first that the eigenvalues and eigenfunctions reduce to those of an ordinary
harmonic oscillator in the limitq = 1, and we retrieve the results of [4], valid for weak
disorder. The parameterµ plays the role of disorder in this limit. In order to understand
how theq-deformation affects the weak disorder results, we first consider a simple case
E = E′ = 0 in the largeN limit. Using (15)–(19), the density correlator in this limit can
be written as

S(X) = 2c

πγ

N∑
m=0

qmgmemqωX
2
∞∑
n=N

qngne
−nqωX2

(20)

where we definedq = e−γ †, andgn =
∏n
i=1(1− q2i−1)/(1− q2i ).

† We change the notation from [6] in order to avoid confusion with the symmetry parameterβ.
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Since we need to take the limitN → ∞ at the end, the weak disorder limitq = 1
has to be defined more carefully. It is clear from (19) that the appropriate limit should be
qN → 1 asN →∞. In terms ofγ , the weak disorder limit becomesγN → 0 asN →∞,
which requires that we considerγ as anN -dependent parameter. The strong disorder limit
will then be obtained whenγN = constant in the limitN →∞. Since both of these limits
can be obtained forγ � 1, we will restrict ourselves to only this limit in the following
without any loss of generality.

For largeN , approximating the sums in equation (20) by integrals and using the
approximationgn ≈ 1/

√
nq , we obtain

S(X) = 1
2

∫ 1

0
ds
∫ 1√

γNq

1
dt e(s

2−t2)X2/µ. (21)

The strong disorder parameterγ appears only in the combinationγNq (note that forγ � 1,
γNq = 1− e−γN ) and only in the upper limit of the integral overt . For weak disorder
(γN → 0) this limit becomes∞ and we retrieve the result of [16, 4]. For finiteγN , we
can write a simple expression for largeX:

S(X) ≈ µ2

2π4X4

(
1−

√
1− e−γNe−

X2

µ
e−γN

)
X2� µ. (22)

Thus even forγN 6= 0, we recover the weak disorder result [16, 4]S = µ2/2π4X4 in
the limit X2 � µeγN . However, forµ � X2 � µeγN we obtain a qualitatively different
behaviour given byS = µe−γN/X2. Thus, we see thatq-deformation sets a new scaleγN
which determines the breakdown of the weak disorder limit.

5. Level velocity autocorrelator

We are now in a position to study the level velocity autocorrelatorC(X) defined in (5). It
was shown in [5] from microscopic theory thatC(X) for largeX has a universal behaviour
independent of the microscopic parameters. This result is valid for weak disorder only and
was reproduced within the Brownian motion model of the Gaussian random matrix ensemble
in [4]. Simon and Altshuler [16] later showed that a reparametrizationεi(X) = Ei(X)/1
and x = √C(0)X, makes the quantityc(x) = C(x)/C(0) universal in the weak disorder
limit and obtained explicit expressions for large and smallx. The quantityC(0) defines a
generalized conductance for arbitrary perturbationX in the weak disorder limit. This result
has not been reproduced within the Brownian motion model of the Gaussian random matrix
ensemble because theX → 0 limit has a singularity at weak disorder so thatC(0) and
therefore the scaling is no longer well defined, and requires an artificial broadening of the
levels [16]. Numerical studies of the tight-binding Anderson model with various disorder,
whereX is either a magnetic flux or nonuniform background potential, agrees with the
above predictions for weak disorder. We will now obtainC(X) for the q-ensemble which
we expect will give us at least qualitatively correct features at strong disorder.

First we rewriteC in terms ofS [4],

C(E,E′, X −X′) = ∂2

∂X∂X′

∫
dE

∫
dE′ S(E,E′;X −X′). (23)

For E = E′ = 0, using equations (15)–(19), we obtain the following general form:

C(X −X′) = c
N−1∑
m=0

∞∑
n=N

(∫ 0

−∞
hn(
√
cE; q)hm(

√
cE; q)e−V (

√
cE;q) dE

)2
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× ∂2

∂X∂X′
e(mq−nq)ω(X −X′)2. (24)

Using repeatedly theq-analogue of integration by parts given in [15], we obtain, e.g.∫ ∞
0
h2n+1(

√
cE; q)h2m(

√
cE; q)e−V (

√
cE;q) dE)

= (1− q)(2n+2m+1)/2

q2m+m(2m+1)+(2n+1)(n+1)

((2n+ 1)q !!)((2m− 1)q !!)

(2n− 2m− 1)q
. (25)

Note that similar integrals for even-order polynomialsh2mh2ne−V vanish. After some
algebra, the expression forC(X −X′) takes the form

C(X −X′) = c

2γ

[ [N/2]∑
m=0

∞∑
n=[N/2]+1

cn,mf2n+1,2m(X −X′)
((2n− 1)q − (2m)q)2

+
[N/2−1]∑
m=1

∞∑
n=[N/2]+1

cm,nf2n,2m+1(X −X′)
((2n− 1)q − (2m)q)2

]
(26)

where

cn,m = q2n+2m[(2n+ 1)q !!] 2[(2m− 1)q !!] 2

(2n+ 1)q !(2m)q !
(27)

and

fn,m(X −X′) = ∂2

∂X∂X′
e[(2m)q−(2n−3)q ]ω(X−X′)2. (28)

In the large N limit, we can obtain a rather simple integral form by noting that
[(2n+1)q !!] 2/(2n)q ! can be well approximated by

√
nq/π . Without any loss of generality we

will also choose the constantc such that the density of levelsσ(E) = S(E,X = X′ = 0) is
unity, so that the mean level spacing is also unity. This givesc = π2γ /2Nq , ω = π2/2µNq .
Replacing the sums by integrals overn andm and neglecting terms of order 1/N we obtain

C(X) = 1

2π2

∫ N/2

0
dm

∫ ∞
N/2

dn
q2n+2m

[(2n)q − (2m)q ]2
fn,m(X)

[√
nq

mq
+
√
mq

nq

]
. (29)

Substitutingnq = 2Nt andmq = 2Ns, we obtain the final expression forC,

C(X) = 1

µ

∫ 1

0
ds
∫ 1√

γNq

1
dt
s2+ t2
s2− t2 e(s

2−t2)X2π2/2µ

−π
2X2

2µ2

∫ 1

0
ds
∫ 1√

γNq

1
dt (s2+ t2)e(s2−t2)X2π2/2µ. (30)

This is a remarkably simple expression forC(X) for the q-ensemble. As in the density
correlator in (21), the deformation parameterγ appears only in the upper limit of the integral
over t , in the combinationγNq , and (30) reduces to the weak disorder limit of [4, 16] when
γN → 0.

In particular, for largeX,

C(X) ≈ − 1

π2X2
+

(√
γNq + 1√

γNq

)
2π2X2

e
− π2X2

2µ

(
1

γNq
−1
)

π2X2

2µ
� 1. (31)

Similar to our results for the density correlatorS(X), we find that even forγN 6= 0 we
retrieve the universal result of weak disorderC(X) = −1/π2X2 at sufficiently largeX.
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Figure 1. Level velocity correlatorC(X) as a function of the external perturbation parameterX

for different values ofγN obtained from numerical evaluation of equation (30). The parameter
γN increases with increasing disorder.

The existence of a new scale set byγNq makes the nonuniversal corrections important for
largeγN . For smallX,

C(X) ≈ C(0)− 2X2

µ2(γNq)3/2
[1+ γNq − 2(γNq)

3/2]
X2

µγNq
� 1 (32)

where

C(0) = 1− γNq
µγNq

ln
1+√γNq
1−√γNq . (33)

Figure 1 showsC(X) as a function ofX for various values ofγN obtained from numerical
evaluation of equation (30) where the weak disorder parameterµ has been set equal to
unity. The approximate limits (31) and (32) show the qualitative features correctly. Note
that C(0) can be related to the conductance in the weak disorder limit [16]. However,
the same is not necessarily true in the strong disorder limit, and therefore at this point it
is not possible to identify our parameterγN quantitatively with the conductance. This
prevents us from making any quantitative predictions, or comparing figure 1 with possible
real experimental numbers. Nevertheless,γN increases monotonically with disorder, and it
should be possible to compare the above qualitative behaviour with, for example, numerical
results for the tight-binding Anderson model at strong disorder.

An expected difference from the weak disorder result is that we have a well-defined
limit at X → 0. The sum rule

∫∞
0 C(X) dX = 0 is explicitly satisfied. The width of the

peak atX = 0 is of orderγN , which goes to zero in the weak disorder limit. As we
mentioned before, it is this singularity atX → 0 which complicates the evaluation of the
scaledc(x) in the undeformed case, where one needs an additional broadening function [16]
to evaluateC(0). The same problem remains here as long as the width is much smaller than
the average dimensionless level spacing, which we have chosen to be unity. We avoid this
complication by restricting our subsequent analysis to the caseγN > 1. The qualitative
aspects of the breakdown of universality will be clearer in this regime since we will not
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Figure 2. The scaled velocity correlatorc(x) obtained from numerical evaluation of
equation (30) for different values ofγN . For comparison, the full curve shows the universal
weak disorder limit from [16].

need anyad hoc broadening procedure. The scaledc(x) can be expressed from (30)–(33)
for γN > 1 as

c(x) = 1−
√
γNq(1+ γNq −−2(γNq)3/2)

(1− γNq) ln[(1+√γNq)/(1−√γNq)] x2 x2

µγNq
� C(0) (34)

= − 1

π2x2

1−
√
γNq + 1√

γNq

2
e
− x2

ln[(1+√γNq )/(1−√γNq )]

 x2

µγNq
� C(0).

(35)

For allγN the universality still exists for large enoughx where the correction term becomes
exponentially small. However, for smallerx the strong disorder parameter cannot be scaled
away and the universality in this regime breaks down. This breakdown is associated with
the breakdown of the universality of spectral correlations at strong disorder [6]. In figure 2
we show the scaledc(x) for different values ofγN evaluated numerically from the full
expression (30). Since bothx andc(x) are scaled variables, this is a universal plot that can
be compared directly with real or numerical experiments.

We mention that it should also be possible to use equations (15)–(19) to study in the
strong disorder regime the statistics of level curvature1

1
(d2Ei(X)/dX2)X→0 which contains

information about quasilocalized states and multifractality [17], as well as the parametric
number variance〈[N(E,X′ + X) − N(E,X)]2〉 whereN(E,X) is the spectral staircase
function measuring the number of levels below some energyE [18].

6. Conclusion

The statistical properties of the energy levels of a weakly disordered mesoscopic system
in the presence of an external perturbation can be studied using Dyson’s Brownian motion
model of Gaussian random matrix ensembles given by (2) and (3) withV (E) ∝ E2. In this
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paper we argue that a generalization of the model withV (E) replaced byV (E; q) given in
(6) corresponds to the generalization from weakly disordered to strongly disordered systems,
the parameterq playing the role of strong disorder. This defines the Brownian motion model
of a q-ensemble because the corresponding limiting equilibrium distribution for the energy
levels are given by the the joint probability distribution of levels of theq-Hermite ensemble.
By mapping (2) on to a time-dependent Schrödinger equation and noting that the many-
body wavefunction of the corresponding time-independent solution has a Vandermonde
determinant form, we obtain the parametric level density correlation functionS(X) defined
in (4). Equation (21) gives a simple integral expression forS(X) in the largeN limit
and show how the weak disorder result breaks down due to the presence of an additional
scale set by the deformation parameter. Using theq-analogue of integration by parts for
q-Hermite polynomials, we also obtain the parametric velocity correlation functionC(X)

for the q-ensemble. The explicit expression (30) shows the breakdown in this regime of
the weak disorder universality in the appropriately scaled quantity. It would be interesting
to test the qualitative aspects of the predictions by comparing these results with numerical
studies of the microscopic tight-binding Anderson model at strong disorder.
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